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EXECUTIVE SUMMARY 
 
 

Applying a generalized linear model (GLM) with a logit or probit link is a routine 
procedure for estimating the effective or lethal dose for a dose-response model. The traditional 
maximum likelihood estimation (MLE) method used in GLMs generates infinite estimates 
whether data are completely separated (CS) or quasi-completely separated ([quasi-CS] i.e., when 
the range of doses for one of the responses [0 or 1] does not overlap the range of doses for the 
other response, or when it overlaps at only a single-dose level).  

 
The bias-reduction (BR) method, described in this paper, removes the first-order 

bias term by applying a modified score function. This method always generates finite estimates, 
which embody all of the properties inherent in traditional MLEs. Unlike the Bayesian method, 
which may not be practical in many different situations, the BR method does not need prior 
information.  

 
The purpose of this paper is to provide all the necessary formulas and procedures 

to carry out the BR method to generate finite estimates. This method could be used in common 
computing platforms (e.g., Microsoft Excel and Minitab) that are not pre-programmed to execute 
the BR method. U.S. Army Edgewood Chemical Biological Center members have been using 
related probit slopes when dealing with separated data, but the BR method would provide an 
additional option in cases where the probit slopes are not known. Additionally, the BR method 
can be used in small samples to reduce first-order asymptotic bias of parameter estimates. The 
BR method was written in R software (listed in Appendix B), and parameter estimates were 
compared between the BR and traditional MLE methods for three different data sets (i.e., CS, 
quasi-CS, and overlapped). The BR method produced finite confidence intervals (CIs) for all 
three data sets, whereas the traditional MLE method generated infinite CIs for the two separated 
data sets. 
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MODIFIED MAXIMUM LIKELIHOOD ESTIMATION METHOD 
FOR COMPLETELY SEPARATED AND QUASI-COMPLETELY SEPARATED DATA 

FOR A DOSE-RESPONSE MODEL 

1. INTRODUCTION 

Maximum likelihood estimation (MLE) for a generalized linear model (GLM) is 
the most widely used method for estimating parameters for dose-response (DR) experiments with 
binruy random 0 and 1 response vru·iables. For DR models, a log-likelihood binomial 
distribution, with a logit or probit link, is a default method in statistical softwru·e for estimating 
the 50th percentile of the lethal dose (LD50) or the 50th percentile of the effective dose (ED50) 
for risk estimates. 

The MLE method does not apply when data ru·e completely sepru·ated (CS) or 
quasi-completely sepru·ated (quasi-CS) between binruy responses (i.e. , when the range of doses 
for the responses [0 or 1] does not overlap or overlaps at only a single-dose level). The 
conditions of existence for MLE estimates are discussed in several papers, 1•

2 and estimates from 
the MLE method go to infmity for the CS or quasi-CS binaty data. Infmite estimates can be 
considered as inaccmate with infinite confidence intervals (Cis). Unique and finite estimates 
exist when data ru·e overlapped in explanat01y vru·iables for binruy responses. Graphs with the 
three different data distributions ru·e shown for CS doses (Figme 1), quasi-CS doses (Figme 2), 
and overlapped doses (Figme 3). 
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Figm e 1. CS data for a DR model with binruy random 0 and 1 response variables. 
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Figure 2. Quasi-CS data for a DR model with binmy random 0 and 1 response variables 
(two responses overlap at dose level3.18). 
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Figure 3. Overlapped data for a DR model with binmy random 0 and 1 response variables 
(two responses overlap at several dose levels) . 

The MLE method is used to estimate the parameters of a nonlinear regression 

from score equations a~~L = U(fli) = 0 (Section 2) where logL is a log-likelihood function. 

Filth recommends a first-order bias-reduction (BR) method for small-sample sizes based on a 
modified score equation.3 Filth's modified MLE (MMLE) ftmction is related to the penalized 
log-likelihood (PL) function, and its fonnulation was suggested as a solution for the CS and 
quasi-CS data. This equation will be discussed in detail in Section 2. 

Other methods for overcoming the problems posed by the CS and quasi-CS data 
prevail, such as incorporating prior infonnation to augment or better estimate the cunent data.4 

However, providing previously collected data is not always practical or possible. 

When calculating LD50 or ED50 values for chemical warfm·e and toxic indusu·ial 
agent human risk estimates at U.S. Almy Edgewood Chemical Biological Center (ECBC), probit 
links (i.e. , statistical relationships) have traditionally been used to perf01m analyses. Probit 

2 



 

 3 

slopes and LD50 or ED50 values are necessary parameters in calculating casualty estimates for 
downwind hazardous prediction models such as VLSTracka and HPAC.b Whenever possible, 
ECBC members have been using previously known, related probit slopes for the CS or quasi-CS 
data sets.  

 
 Most of the published papers that were researched for this report discussed the 
MMLE method for the exponential family with a canonical link (EFCL) such as logistic 
binomial distribution. Because not much information is available on the necessary formulas for 
estimating CS and quasi-CS data-probit-link parameters, the purpose of this paper is to provide 
all the necessary formulas and procedures needed for estimation of finite parameters. These 
formulas may widen the application of the method to the other platforms that do not have built-in 
modules to carry out MMLEs.  

 
Section 2 discusses MLE properties and bias-correction (BC) derivations of first-

order asymptotic MLE bias. The BR method used for applying modified score functions and 
their relationships to PL functions for the logistic binomial function are also discussed. The 
differences between the BC and BR methods are also briefly discussed, and general equations for 
the BC and BR methods are provided. For the BR method, two different formulas are provided 
for canonical and non-canonical links. Section 3 provides the estimation process for applying an 
iterative reweighted procedure and obtaining initial estimates to begin the procedure. Section 4 
summarizes the methods and procedures for the BR method. The R codes ([R Programming 
Language and Software] Ross Ihaka and Robert Gentleman, University of Auckland, New 
Zealand), which are used to estimate an intercept and a slope using the BR method, are listed in 
Appendix B. 

 
 

2. BACKGROUND FOR DERIVATION OF MODIFIED SCORE FUNCTION 
 

2.1 Properties of MLE Values in GLM 
 
Generally, GLM is composed of three components: (1) The random component of 

response values, y; (2) the systematic component producing a linear predictor, ߠ ൌ ∑ ௜ݔ
௣
ଵ   ௜; andߚ

(3) a link function between the random and systematic components, ߠ ൌ ݃ሺߤሻ ൌ  where g(µ) ,ߚܺ
is a link function. The random component, y, with the exponential family (such as binomial 
distribution) has the following distributional form:6 

 
 

݂ ൌ exp ൜
ሺߠݕ െ ܾሺߠሻሻ

ܽሺ∅ሻ
൅ ܿሺݕ, ∅ሻൠ (1)

 
with distribution-specific functions a(.), b(.), and c(.). For the binomial distribution, the 
dispersion parameter is a(φ) = 1, and it can be expressed in the log form of the exponential 
formula: 
 

                                                 
a VLSTrack is Vapor, Liquid, and Solid Tracking. 
b HPAC is Hazard Prediction and Assessment Capability. 
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 logሺ݂ሻ ൌ logሺݕ
ߨ

ሺ1 െ ሻߨ
ሻ െ ݊logሺ1 െ ሻିଵߨ ൅ logሺ

݊
ሻ (2)ݕ

 
The canonical link derived for logit from eq 2 is expressed as 
 
ߠ  ൌ logሺ

ߨ
ሺ1 െ ሻߨ

ሻ (3)

 
The logit model fits to the Ɵ for a linear model and transforms back to π. For probit, the link is 

 
ߠ  ൌ ሻ (4)ߨଵሺିܨ

 
where ܨ൫ݔ௜

 ൯ is a standard cumulative normal distribution expressed asߚ′
  
 

௜ݔሺܨ
ᇱߚሻ ൌ න

1

ߨ2√

௫ೕ
ᇲఉ

ିஶ
exp ቆെ

ଶݕ

2
ቇ݀(5) ݕ

  
                           The MLE method is used to estimate regression parameters ߚ௝ (j = 1,…,p) by 
maximizing the likelihood function used to apply first-order derivatives with regard to parameter 
 ௜. The log-likelihood function for the probit model linked with the binomial distribution isߚ
 
 

lnܮ ൌ෍ቊݕ௜ln
௝ݔ൫ܨ

ᇱߚ൯

1 െ ௝ݔ൫ܨ
ᇱߚ൯

൅ lnሺ1 െ ௝ݔ൫ܨ
ᇱߚ൯ሻቋ

௡

௜ୀଵ

 (6)

  
where ݕ௜ is response variables 0 and 1. The first-order derivatives of the above log-likelihood 
function are 
 
 ߲ln	ሺܮሺߚሻሻ

௝ߚ߲
ൌ෍

݂൫ݔ௝
ᇱߚ൯

௝ݔ൫ܨ
ᇱߚ൯ ቀ1 െ ௝ݔ൫ܨ

ᇱߚ൯ቁ

௡

௜ୀଵ

ሺݕ௜ െ ௝ݔ൫ܨ
ᇱߚ൯ሻݔ௜ (7)

 
where ݆ is the jth explanatory variable, and  ݂ሺݔሻ denotes a standard normal-density function   
  
 

݂ሺݔሻ ൌ
1

ߨ2√
e
ି൬
௫మ

ଶ ൰  (8)

   

The estimates are calculated leading to the above score equations as 
 
 
 ߲lnܮሺߚሻ

௝ߚ߲
ൌ ܷ൫ߚ௝൯ ൌ 0 (9)

 
                              The MLE method has many desirable properties for large samples. For 
example, MLE ߚ෨ is a consistent estimator of true parameter β0 with the probability approaching 1 

as ݊ → 	∞, that is, ߚ෨mle	
௉
→   , The consistent solution is  asymptotically normal	଴.ߚ
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 √
௡

ఙ
൫ߚ෨ െ ଴൯ߚ

௅
→	Z (i.e.,	ߚmle  converges to distribution Z, where Z is a standard normal 

distribution, and asymptotic variances of unbiased estimators follow  ܫሺߚ଴ሻିଵ, where ܫሺߚ଴ሻ is the 
Fisher information matrix). The information matrix for the probit model is expressed as 
 
 

ሻߚሺܫ ൌ ሺܧ
௝ݔߪ

ᇱߚ

ߚߪ
ሻଶ	 ൌ 	െܧ ቆ

ଶߪ log൫ݔ௝
ᇱߚ൯

ଶߚߪ
ቇ ൌ න

݂ଶሺݔ௝
ᇱߚሻ

௝ݔ൫ܨ
ᇱߚ൯ሺ1 െ ௝ݔ൫ܨ

ᇱߚ൯ሻ
ܺᇱܺ

௡

௜ୀଵ
 (10)

 
where X′X is an explanatory matrix including a vector of 1 for an intercept. The MLE estimates 
are asymptotically unbiased and reach the Cramer-Rao bound,7 which may be expressed as 
  
 

var൫ߚ෨൯ ൒
1

଴ሻߚሺܫ
 (11)

 
2.2 BC Method Derivation  

 
For CS and quasi-CS data, the estimates from the above score equations go to 

infinity with large variances exceeding thousands, which makes the estimates inaccurate with 
CIs reaching infinity. To remedy the infinite estimates, the score function is modified when 
derived from the BC method. 

 
The score function computed from the profile likelihood is biased3 because of the 

combination of the curvature and unbiased nature of the score function (i.e., 0 expectation of the 
score function expressed as  ܧሼܷሺߚ଴ሻሽ = 0 at the true value of β). 

 
The expected estimators of MLE vector βs may be expressed as 	

෨൯ߚ൫	ܧ ൌ ଴ߚ ൅
௕భሺఉబሻ

௡
+	௕మ

ሺఉబሻ

௡మ
 +
௕యሺఉబሻ

௡య
൅	…, where β0 is the true unknown parameter; ݅ߚ is the 

bounded function of β0; and n is usually the number of observations. BC is generally 
accomplished in two steps:  
(1) maximum likelihood estimates are calculated and (2) the estimates are corrected up to the 
first-order bias term by subtracting it from the asymptotic bias of the maximum likelihood 

estimates of ߚ෨  (i.e.,  ߚ෨BC = ߚ෨ െ ௕భሺఉబሻ

௡
). 

 
Many authors discussed the BC technique subtraction of the first-order bias term, 

especially for distributions in the EFCL, such as the logistic binomial function.8,9 Nelder 

provided a formula for the first bias term, 
௕భሺఉబሻ

௡
,  for the EFCL, which was expressed as 

 
 ܾଵሺߚ଴ሻ

݊
ൌ ሺ்ܹܺܺሻିଵ்ܹܺ߳ (12)

 
where 
 

߳௜ ൌ െ
1
2
ܳ௜௜

݇ଷ௜
݇ଶ௜

 (13)
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and Qii and W are diagonal elements of the matrices 
 
 ܳ ൌ ܺሺ்ܹܺܺሻିଵ்ܺ (14)

 
and 
 

ܹ ൌ
ሺ݀௜ሻଶ

݇ଶ௜
 (15)

 
 The k2i and k3i are the variances of response values y and the third-order 
cumulant10 for the Bernoulli distribution, which are π(1 − π) and  π(1 − π)(1 − 2π), respectively. 
The derivation of the cumulant generating function for the Bernoulli distribution is presented in 
Appendix A.1. The ݀௜in W is related to eqs 3 and 4 and the probit 
 
 

݀௜ ൌ
ߨ݀
ߠ݀

ൌ ݂ሺݔ௜ሻ (16)

 
For a non-canonical link such as probit, the k3i and k2i are replaced with ݀௜

ᇱ and ݀௜ because 
relations ݇ଶ௜ ൌ ∅݀௜ and ݇ଷ௜ ൌ ∅ଶ݀௜

ᇱ do not apply, where ∅ is a dispersion parameter. The ݀௜
ᇱ for 

the probit is 
 
 

݀௜
ᇱ ൌ

݀ଶߨ
ଶߠ݀

ൌ െሺݔ௜ߚሻ݂ሺݔ௜ߚሻ (17)

 
Further discussion of the non-canonical link is provided in Section 2.4. The Ws for the logistic 
and probit binomials are, respectively, the following diagonal elements: 
 
 ܹ ൌ diagሼߨ௜ሺ1 െ ௜ሻሽ (18)ߨ
  

and 
 

ܹ ൌ diagሼ ௜݂
ଶ

௜ሺ1ߨ െ ௜ሻߨ
ሽ 

(19)

 
The denominator in eq 19 is the inverse of the variance of y response values, multiplied by a 
square of the normal density function. The numerator comes from the non-canonical link shown 
in eq 4. 
 
 The BC method subtracts first-order bias from the parameter estimates, which 
were infinite for the CS and quasi-CS data. Thus, the BC method fails to eliminate the initial 
problem of infinite estimates.  
 
2.3 BR Method Derivation  

 
Firth suggested that the reduction of the first-order bias for the EFCL could be 

performed by modifying the score function, ܷ∗ሺߚሻ ൌ ܷሺߚሻ െ  ሻ is theߚሺܫ	ሻ,whereߚሻܾሺߚሺܫ
information matrix, and b(β) is the first-order bias in the maximum likelihood estimator, ߚ෨.3 In 
his paper, he explained that this method shifts the score function downward by applying the 
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information matrix, which is the gradient of the score function. Unlike the BC method, this 
method does not depend on the maximum likelihood estimate. The modified score function for 
the EFCL can be expressed as ܷ∗	 ൌ ܷ െ ்ܹܺ߳, if we apply the first-order bias term in eq 12 to 
the information matrix, which will be explained in detail in Section 2.4 and Appendix A.2. 

 
A general form of MMLE for the canonical link is3 

 

 
௧ܷ
∗ ൌ 	 ௧ܷ ൅

1
2∅

෍൬
݇ଷ௜
݇ଶ௜

൰ ݄௜ݔ௜௥ ሺݐ ൌ 1,… , ሻ݌
௜

 (20)

 
where hi is a diagonal element 
 
ܪ  ൌ ܹ

ଵ
ଶܺሺ்ܹܺܺሻିଵ்ܹܺ

ଵ
ଶ (21)

 
and W is given in eq 15. 
 
 Firth also showed a relation between the MMLE and the PL functions for the 

EFCL for the first-order bias reduction expressed as ܷሺߚ௜ሻ∗ ≡ ܷሺߚ௜ሻ ൅
ଵ

ଶ
trace ቂܫሺߚሻିଵ ቄఙூሺఉሻ

ఙఉ೔
ቅቃ, 

where I(β)−1 is an inverse of the information matrix evaluated at β. The solution of the above 

MMLE is the stationary points for ܮ∗ሺߚሻ∗ ൌ |ሻߚሺܫ|ሻߚሺܮ
భ
మ, where |ܫሺߚሻ|

భ
మ is the Jeffreys invariant 

prior.11 Therefore, the same BR result can be achieved for the EFCL by applying the PL 
method.3  
 
 The BR estimate is also consistent and asymptotically normal. One of the 
properties for the BR method for the EFCL is that it always has finite estimates, even though the 
traditional MLE has infinite values.3 
 
2.4 BR Method Derivation for the Non-Canonical Model 

 
A general link form of a modified score function for the non-canonical model 

may be expressed as12 

 

 

௧ܷ
∗ ൌ ௧ܷ ൅

1
2
෍݄௜

݀௜
ᇱ

݀௜௜

௜ݔ  (22)

 

where t indexes parameters 1,…,p, and i is the number of sample sizes. The ݀௜, ݀௜
ᇱ, and hi are 

given in eqs 16, 17, and 21. The difference between the canonical and the non-canonical models 
is that the latter involves the covariance between the first- and second-order derivatives of a 
likelihood function.6  
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3. ESTIMATION METHOD 
 

3.1 Estimation Method with Newton Raphson Iteration 
 
A first-order Taylor-series expansion for the modified score function about the 

true unknown parameters, β0, may be expressed as13 

 

                       0 ൌ ܷ∗൫ߚ෨൯ ൎ ܷ∗ሺߚ଴ሻ െ ෨ߚ଴ሻ൫ߚሺܫ െ ଴൯ (23)ߚ
   

where ܫሺߚ଴ሻ is an information matrix. From eq 23,  
 
෨ߚ  ൎ ଴ߚ ൅ ሼܫሺߚ଴ሻሽିଵܷ∗ሺߚ଴) (24)

 

and final parameter estimates can be obtained by updating initial estimates until the estimates 
converge to certain criteria. In this approach, the values for β0 are replaced with initial starting 
values: 
 
௦ାଵߚ  ൌ ௦ߚ ൅ ሼିܫଵሺߚ௦ሻ ௦ܷ

∗ሽ (25) 

                        
If the relevant eqs 7, 16, 17, and 21 are used in eq 22 for the probit, the MMLE model can be 
written as   
 
 

௧ܷ
∗ ൌ ∑ ௙ሺ௫೔ఉሻ

ிሺ௫೔ఉሻሺଵିிሺ௫೔ఉሻሻ
ሼݕ௜ െ

ଵ

ଶ
݄௜

ிሺ௫೔ఉሻሺଵିிሺ௫೔ఉሻሺ௫೔ఉሻሻ

௙ሺ௫೔ఉሻ
௜ െ    ௜,௧  t = 1,…,pݔሻሽߚ௜ݔሺܨ

(26)
  
  
 Matrices for an information matrix and a modified score function can be formed 
from eqs 10 and 26, which would then be used for the iterative reweighted estimation process in 
eq 24. A variance-covariance matrix can be obtained from an inversion of the information matrix 
expressed in eq 10.   
 
3.2 Initial Estimates for the Newton Raphson Procedure 

 
Finding suitable initial estimates is a key factor in getting converged estimates in 

eq 24; otherwise, estimates may go out of range for a normal density. A cumulative normal 
distribution may not generate proper values in eq 26. 

 
There are several ways to generate suitable initial estimates, such as by 

augmenting data for the two-response values (0 and 1) to make pseudo-overlapped data or by 
dividing large estimated values from the traditional MLE by a constant that does not generate 
extreme values in eq 26. Estimates from an ordinary regression can also be used if the GLM 
function is not available. Alternatively, the simplest way is to set all the initial parameters at 0, 
thus generating 0.5 and 0.40 for the cumulative normal distributions in eq 5 and the density 
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function in eq 8, respectively. The last method may be preferable over methods for other 
platforms because it does not require any calculations. 

 
Comparisons of parameter estimations and variances between the BR and 

traditional MLE methods for the three different data sets that were shown in Figures 1–3 are 
provided in Tables 1–3. Comparisons of LD50 and CI values are provided in Table 4–6.  
 

Table 1. Comparisons of Parameter Estimates and Standard Errors between BR and  
Traditional MLE Methods for Figure 1 

Parameter 
Estimate Standard Error 

BR Traditional BR Traditional 
Intercept −6.95 −102.07 3.74 95865 
Slope for Dose  5.20    73.52 2.83 69511 

 
 

Table 2. Comparisons of LD50 and CI Values between BR and Traditional MLE Methods  
from Table 1 

Method LD50 Standard Error CI 
BR 21.68 0.10 (13.68, 34.37) 

Traditional MLE 24.45              83.14 (−∞∗, ∞) 
*∞ denotes infinity. 
 
 

Table 3. Comparisons of Parameter Estimates and Standard Errors between BR and  
Traditional MLE Methods for Figure 2 

Parameter 
Estimate Standard Error 

BR Traditional BR Traditional 
Intercept −5.64 −60.03 3.62 12250 
Slope for Dose 11.43 120.34 6.94 24381 

 
 

Table 4. Comparisons of LD50 and CI Values between BR and Traditional MLE Methods  
from Table 3 

Method LD50 Standard Error CI 
BR 3.12 0.05 (2.54, 3.82) 

Traditional MLE 3.15 0.73 (0.12, 83.22) 
 
 

Table 5. Comparisons of Parameter Estimates and Standard Errors between BR and  
Traditional MLE Methods for Figure 3 

Parameter 
Estimate Standard Error 

BR Traditional BR Traditional 
Intercept −8.01 −9.92 3.24 3.87 
Slope for Dose  5.47 6.73 2.14 2.55 
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Table 6. Comparisons of LD50 and CI Values between BR and Traditional MLE Methods  
from Table 5 

Method LD50 Standard Error CI 
BR 29.05 0.05 (23.87, 35.34) 

Traditional MLE 29.74 0.04 (25.26, 35.01) 
 
 
4. SUMMARY 

 
 The BR method is a variant of the BC method, and, unlike the latter, it does not 
require finite estimates in removing the first-order bias term in the asymptotic expansion of 
MLE. For the EFCL, the BR method results in the same parameter estimates as the PL method 
using the Jeffreys invariant prior. It also generates finite estimates, although the traditional MLE 
produces infinite estimates. 
 

For CS or quasi-CS data, the BR method does not require prior information like 
Bayesian techniques, which may be difficult in many different situations. Like the traditional 
MLE method, the BR estimator has consistency and asymptotic normality. A variance-
covariance matrix can be obtained from an inversion of the information matrix after the 
reweighted iterative procedure is finished. 

 
Short descriptions of formula derivations are provided because a detailed 

discussion for complicated mathematical theory developments is not the focus of this paper.  
 
R codes (Appendix B) are provided for executing the BR method, which uses 0 

intercept and 0 slope for initial estimates, and the convergence criteria for the estimates are set to 
1 × 10−5 in the codes for calculating the differences between the two successive estimates. The 
written BR method is the same as that in the binomial-response GLM program in R, and the 
estimated values are matched between the two. 

 
All the necessary formulas and procedures are provided to execute the BR method 

to estimate LD50 or ED50 for binomial distribution with probit link for CS and quasi-CS data. 
These formulas are useful in getting estimates for different computing platforms, which do not 
have a built-in module for MMLE of GLM. The only required computing capabilities are 
inversion and multiplication of a matrix with modules capable of generating values from a 
normal density function and a cumulative normal distribution function (eqs 5 and 8, 
respectively).  

 
The BR method is recommended as an alternative to applying related probit 

slopes, which have been used historically at ECBC for CS and quasi-CS data. When probit 
slopes are unavailable and when sample sizes are small, the BR method may enable previously 
unattainable analyses. 
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ACRONYMS AND ABBREVIATIONS 
 

 
BC bias correction 
BR bias reduction 
CI confidence interval 
CS completely separated 
DR dose response 
ECBC U.S. Army Edgewood Chemical Biological Center 
ED50 50th percentile of the effective dose 
EFCL exponential family with canonical link 
GLM generalized linear model 
HPAC Hazard Prediction and Assessment Capability 
LD50 50th percentile of the lethal dose  
MLE maximum likelihood estimation 
MMLE modified maximum likelihood estimation 
PL  penalized log-likelihood 
quasi-CS quasi-completely separated 
VLSTrack  Vapor, Liquid, and Solid Tracking 



 

 14 

Blank



 

 15 

APPENDIX A 
 

DERIVATION OF CUMULANT GENERATING AND  
MODIFIED MAXIMUM LIKELIHOOD ESTIMATION FUNCTIONS 

 
 

A.1 Derivation of the Cumulant Generating Function for Bernoulli Distribution 
 

݃ᇱሺݐሻ ൌ ଵ

ቆቀభ
೛
ିଵቁ௘ష೟ାଵቇ

.                                                              (A1) 

 
  In eq A1, k1 = g′(0) = p, k2 = g′(0) = p(1−p). It can be calculated from the 
recursive formula in eq A2 
 

݇௡ାଵ ൌ ሺ1݌ െ ሻ݌ ௗ௞೙
ௗ௣

                                                               (A2) 

 
A.2 Derivation of Modified Maximum Likelihood Estimation (MMLE) Function 

 
 Because a general form of a score function for exponential form is† 
ܷ ൌ ܺ௧ܹିܦଵሺݕ െ  ሻ, and the expected information matrix is expressed as XTWX, the reductionߨ

of the first term is ܫሺߚሻ ൈ ௕భሺఉሻ

௡
ൌ ሺ்ܹܺܺሻ ൈ ሺ்ܹܺܺሻିଵ்ܹܺ ∈, where W is derived from 	

ܹ ൌ ሺௗ೔ሻమ

௞మ೔
 , and ϵ for a general form is‡ ߳௜ ൌ െ ଵ

ଶ
ܳ௜௜

ௗ೔
ᇲ

ௗ೔
. The Q,	݀௜, and ݀௜

ᇱ	are shown by 

the	following	functions:	ܳ ൌ ܺሺ்ܹܺܺሻିଵ்ܺ; ݀௜ ൌ
ௗగ

ௗఏ
ൌ ݂ሺݔ௜ሻ; and 

݀௜
ᇱ ൌ ௗమగ

ௗఏమ
ൌ െሺݔ௜ߚሻ݂ሺݔ௜ߚሻ, respectively. From eqs A1 and A2, the MMLE is expressed as 	

௧ܷ
∗ ൌ ݕଵሺିܦ்ܹܺ െ ሻߨ െ	 ்ܹܺ߳. This can be rewritten as ௧ܷ

∗ ൌ ݕଵሺିܦ்ܹܺ െ ߳ܦ െ  ,ሻ.  If Wߨ
D, and ϵ are used as substitutes in the score equation, its components can be restated as 

 ௧ܷ
∗ ൌ ∑ ௗೝ

௞మ,ೝ
ሺݕ௜ ൅

ଵ

ଶ
݄௜

ௗ೔
ᇲ

௪೔
െ ௜௧௜ݔ௜ሻߨ . 

 
 
 
 
 

                                                 
†  Kosmidis, I.; Firth, D.  Bias Reduction in Exponential Family Nonlinear Models. Biometrika 2009, 96 
(4), 793–804. 
‡  McCullagh, P.; Nelder, J.A.  Generalized Linear Model, 2nd ed.; Chapman and Hall: London, 1989. 
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APPENDIX B 
 

R CODES USED FOR ESTIMATING AN INTERCEPT AND A SLOPE  
WITH THE BIAS-REDUCTION METHOD   

 
function(data)  
{ 
# This is finding an intercept and a slope for probit analysis for separated data for one covariate 
'dose'. 
# The solution is based on Ioannis Kosmidis’s Ph.D. dissertation. 

# For initial estimates, 0 intercept and 0 slope are used. 
# First, sort the dose in ascending order. 
data<-data[order(data$dose),] 
dose<-data$dose 
log.dose<-log10(dose) 
# Get a length of data. 
data.dim<-dim(data)[1] 
old.inter<-10000 
old.sp<-10000 
# initial estimates of an intercept and a slope 
inter<-0 
sp<-0 
 
while (abs(old.inter-inter)>=0.000005 && abs(old.sp-sp)>=0.000005) 
{ 
resp<-data$resp 
# To add an intercept term 
x.inter<-rep(1,data.dim) 
x.sp<-log.dose 
# This is from the first derivative 
w<-(dnorm(inter+sp*x.sp)/(pnorm(inter+sp*x.sp)*(1-pnorm(inter+sp*x.sp)))) 
# This is from second derivative. 
w1<-(dnorm(inter+sp*x.sp))^2/(pnorm(inter+sp*x.sp)*(1-pnorm(inter+sp*x.sp))) 
 
library(Matrix) 
# This is for H matrix 
w1.diag<-Diagonal(data.dim,w1) 
x.total<-cbind(x.inter,x.sp) 
t.x.total<-t(x.total) 
middle.invert<-solve(t.x.total%*%w1.diag%*%x.total) 
h<-sqrt(w1.diag)%*%x.total%*%middle.invert%*%t.x.total%*%sqrt(w1.diag) 
# Now pick up the diagonal elements of H matrix. 
h.diag<-diag(h) 

                                                 
 Kosmidis, I.  Bias Reduction in Exponential Family Nonlinear Models. Ph.D. Dissertation, University of Warwick, 
Coventry, U.K., 2007. 
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# This is for an intercept in the first derivative. 
# ub1<-w*(resp-pnorm(inter+sp*x.sp)+h.diag*(0.5-pnorm(inter+sp*x.sp)))*x.inter 
# This is from R score adjusted function ub1<-w*(resp-0.5*h.diag*(pnorm(inter+sp*x.sp)*(1-
pnorm(inter+sp*x.sp))*(inter+sp*x.sp)/dnorm(inter+sp*x.sp))-pnorm(inter+sp*x.sp))*x.inter 
ub1.sum<-sum(ub1) 
 
ub2<-w*(resp-0.5*h.diag*(pnorm(inter+sp*x.sp)*(1-
pnorm(inter+sp*x.sp))*(inter+sp*x.sp)/dnorm(inter+sp*x.sp))-pnorm(inter+sp*x.sp))*x.sp 
ub2.sum<-sum(ub2) 
ub.mat<-matrix(c(ub1.sum,ub2.sum),nrow=2) 
 
# Generate a hessian matrix. 
he11<-sum(w1*x.inter) 
he12<-sum(w1*x.inter*x.sp) 
he21<-sum(w1*x.inter*x.sp) 
he22<-sum(w1*x.sp^2) 
he.mat<-matrix(c(he11,he12,he21,he22),nrow=2,byrow=T) 
new.mat.solve<-solve(he.mat)%*%ub.mat 
old.mat<-matrix(c(inter,sp),nrow=2) 
 
old.inter<-old.mat[1,1] 
old.sp<-old.mat[2,1] 
# Upgrade to new estimates. 
new.mat<-old.mat+new.mat.solve 
inter<-new.mat[1,1] 
sp<-new.mat[2,1] 
} 
# Final estimates 
est<<-matrix(c(inter,sp),byrow=T) 
#new.mat<<-new.mat 
va.final<-solve(he.mat) 
 
# To retrieve the final variances matrix, 
va.final<<-va.final 
} 
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